EconPapers    
Economics at your fingertips  
 

An improved Shapley value-based profit allocation method for CHP-VPP

Fang Fang, Songyuan Yu and Mingxi Liu

Energy, 2020, vol. 213, issue C

Abstract: This paper develops a novel method of profit allocation for multiple distributed energy resources (DERs) that co-exist in a combined heat and power-virtual power plant (CHP-VPP). The innovative concept of CHP-VPP enables the coordinated dispatching of heat and power, leading to greater decision making flexibility and immense monetary benefits. CHP-VPP operation models with uncertainties are built based on the inherent behaviors of DERs operating in two coupled energy networks, i.e., the electricity and the heat networks. To balance the interests of multiple stakeholders in the coupled energy networks, a cooperative game scheduling model for CHP-VPP is established. An improved Shapley value method is developed and implemented to achieve the optimal profit allocation. Realistic simulations on a 4-node test system and a modified IEEE 30-node + Heat 14-node system verify the efficacy of the proposed approach.

Keywords: Combined heat and power-virtual power plant (CHP-VPP); Profit allocation; Cooperative game; Improved Shapley value method (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220319125
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:213:y:2020:i:c:s0360544220319125

DOI: 10.1016/j.energy.2020.118805

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:213:y:2020:i:c:s0360544220319125