Electric bus scheduling under single depot dynamic wireless charging infrastructure planning
Yaseen Alwesabi,
Yong Wang,
Raul Avalos and
Zhaocai Liu
Energy, 2020, vol. 213, issue C
Abstract:
The use of electric bus fleets has become a topical issue in recent years. This paper aims to analyze strategic bus fleet scheduling and dynamic wireless charging (DWC) planning problems based on data obtained from the transportation center at Binghamton University. More precisely, we have developed a mixed-integer mathematical model to simultaneously select the optimal location of the DWC facilities and find the optimal battery sizes of electric buses (EBs) for the system. This DWC planning model allows all the system’s EBs to travel the common routes (depot-base station-depot) safely despite their different optimal battery sizes. Additionally, we have developed a scheduling model to find the optimal number of EBs by considering the additional charging time and battery size restrictions. To allow organizations to determine bus replacement plans that will meet their fleet electrification targets in a cost-effective way, we have introduced joint and disjoint scheduling planning strategies for the current conventional bus fleet and a potential EB fleet. Further, we have reformulated the DWC model so an EB can serve several routes with uniform battery size. The results show that the joint scheduling with one optimal battery size is more cost-effective than disjoint scheduling with route-specific battery sizes.
Keywords: Battery electric bus; Dynamic wireless charging; System optimization; The single depot scheduling problem (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220319629
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:213:y:2020:i:c:s0360544220319629
DOI: 10.1016/j.energy.2020.118855
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().