Performance analysis of an improved 30 MW parabolic trough solar thermal power plant
Wang Yuanjing,
Zhang Cheng,
Zhang Yanping and
Huang Xiaohong
Energy, 2020, vol. 213, issue C
Abstract:
As a promising application of solar energy, parabolic trough solar thermal power generation technology is one of the most important methods of solar thermal utilization. This paper takes the SEGS VI parabolic trough plant as the research object and proposes an improved 30 MW parabolic trough solar thermal power plant. An optimization model is established for the overall plant efficiency, and the design of the solar field of the improved plant is presented with an explanation in this paper. This paper uses the commercial software Ebsilon to establish the simulation models of the SEGS VI Plant and the improved plant and conducts a performance analysis of the two plants under design and operating conditions. The results show that the improved plant based on sectional heating can reduce the average working temperature of the thermal oil. The solar field efficiency increases by 0.52% and the overall plant efficiency increases by 0.24% under the design conditions. The daily mean solar field efficiency data increase by 0.53%, and the overall plant efficiency increases by 0.22% under operating conditions. Simultaneously, the number of collectors in the solar field also decreases, which has good application prospects.
Keywords: Concentrating solar power plants (CSP); Parabolic trough; Performance simulation; Thermal efficiency (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220319691
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:213:y:2020:i:c:s0360544220319691
DOI: 10.1016/j.energy.2020.118862
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().