EconPapers    
Economics at your fingertips  
 

Evaluation of supercritical CO2 compressor off-design performance prediction methods

Yongju Jeong, Seongmin Son, Seong Kuk Cho, Seungjoon Baik and Jeong Ik Lee

Energy, 2020, vol. 213, issue C

Abstract: A supercritical CO2 (S–CO2) Brayton cycle has a compact and simple layout, which suggests the possibility to serve as a small scale distributed power conversion system. Off-design behaviors of each component determine the system off-design performance in the S–CO2 power cycle. Among components, compressor performances have the largest impact on the system off-design analysis since it operates nearest to the critical point of CO2. In the system analysis, the off-design performance of a compressor is usually pre-calculated for the fixed inlet conditions. The performance map is then converted for the off-design performances prediction using corrected mass flow rate and corrected rpm. Similitude models are used for the conversion. Several similitude models have been developed mostly for air conditions previously, but the applicability of these models to S–CO2 still needs to be tested. In this paper, to evaluate the existing models for the S–CO2 conditions, experimentally validated 1D mean-line code is used to generate wide range of S–CO2 compressor data set. As a result of the evaluation, Pham model showed the most accurate enthalpy rise prediction resulting in the best pressure rise prediction, and the efficiency prediction could be modified with density correction to improve the off-design performance prediction.

Keywords: Supercritical CO2; S–CO2 compressor; Off-design performance prediction; Similitude analysis; Performance map (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220321782
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:213:y:2020:i:c:s0360544220321782

DOI: 10.1016/j.energy.2020.119071

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:213:y:2020:i:c:s0360544220321782