EconPapers    
Economics at your fingertips  
 

Study on the synergism of thermal transport and electrochemical of PEMFC based on N, P co-doped graphene substrate electrode

Chaoling Han and Zhenqian Chen

Energy, 2021, vol. 214, issue C

Abstract: In this work, a metal-free electrode substrate with unequal amounts of nitrogen and phosphorus co-doped graphene (N, P-G) and different spacer contents is synthesized from activated carbon (AC) via a one-step synthesis technique. Characterization of the chemical structures of this material shows that it has more active bonds and improves electrochemical performance as the anneal temperature increase. The unequal dope by the ratio of nitrogen to phosphorus is more than 2:1 can significantly improve oxidation-reduction reaction (ORR). With a mass ratio of 10% platinum, carbon (Pt/C) to 10% AC @ N, P-G as 2:1, the P-G composite electrodes demonstrate superior heat dissipation performance in comparison to traditional Pt/C electrodes due to the higher thermal uniformity and shorter thermal transport response time. With AC @ N, P-G as the electrode substrate material, a maximum output performance of 0.551 Wcm−2 is obtained at various temperatures, humidities, and mass ratio conditions, indicate a composite material with excellent ORR stability and high heat dissipation capacity on the electrode surface. Our experimental results show that an electrode substrate material with unequal amounts of N, P-G with AC spacer content is a promising candidate as a non-metallic substrate for proton exchange membrane (PEM) fuel cells.

Keywords: P/N co-doped graphene; Unequal amount; Activated carbon spacer; Oxygen reduction reaction; Heat transport; PEM fuel cell (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220319150
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:214:y:2021:i:c:s0360544220319150

DOI: 10.1016/j.energy.2020.118808

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220319150