CO2 mineral sequestration by using blast furnace slag: From batch to continuous experiments
Shan Ren,
Tahani Aldahri,
Weizao Liu and
Bin Liang
Energy, 2021, vol. 214, issue C
Abstract:
CO2 mineral sequestration is a promising strategy to combat global warming. Indirect CO2 mineral sequestration was proposed in our previous study by using blast furnace slag as feedstock. As the continuity of this research, the continuous experiment process was carried out in a self-designed rotary kiln, and the results were compared with those of the batch experiment. The results showed that several problematic situations, such as the formation of kiln rings, insufficient mass, and heat transfer, occurred in the continuous experiment. A “returning charge” operation by adding an inert component into the feedstock was suggested for the prevention of ring formation and achieved good results. The reaction conditions for the continuous experiment were harsher than those of the batch experiment due to the scale-up effects. Preliminary analysis of CO2 net-emission reduction was conducted based on the continuous experimental results. It was shown that the net reduction of CO2 emissions amounted to 36 kg for 1000 kg of blast furnace slag processed. The results demonstrated in this study can act as guidance for pilot- or industrial-scale applications of indirect CO2 mineral sequestration technologies, especially for process parameter optimization and equipment design.
Keywords: Blast furnace slag; Ammonium sulfate; CO2 mineralization; Continuous experiment; Scale-up (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422032082X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:214:y:2021:i:c:s036054422032082x
DOI: 10.1016/j.energy.2020.118975
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().