EconPapers    
Economics at your fingertips  
 

Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short -term memory neural network

Jiandong Duan, Peng Wang, Wentao Ma, Xuan Tian, Shuai Fang, Yulin Cheng, Ying Chang and Haofan Liu

Energy, 2021, vol. 214, issue C

Abstract: Nowadays, various wind power forecasting methods have been developed to improve wind power utilization. Most of these techniques are designed based on the mean square error (MSE) loss, which are very suitable for the assumption that the error distribution obeys the Gaussian distribution. However, there are many outliers in real wind power data due to many uncertain factors such as weather, temperature, and other random factors. Meanwhile, the highly nonlinear process of converting wind energy into wind power may changes the statistical characteristics of errors. Therefore, the prediction model established based on the traditional MSE loss may lead to unsatisfactory results. As a result, a robust short-term wind power hybrid forecasting model based on Long Short-term Memory (LSTM) neural network with Correntropy combining an improved variational mode decomposition (IVMD) and Sample Entropy (SE) is proposed in this work. The IVMD in which the parameter K in the IVMD is determined by the Maximum Correntropy Criterion (MCC) is used to decompose the original wind power data and the decomposed subseries is reconstructed by SE to improve the prediction efficiency. Then the MCC is also utilized to replace the MSE in the classic LSTM network to develop a novel robust hybrid model to forecast the wind power. Finally, four experiments were conducted using real data from two wind farms in China at different sampling intervals to evaluate the effectiveness of the proposed method, and the results show that proposed method is more effective than other traditional methods.

Keywords: Short-term wind power forecasting; Long short-term memory neural network; Maximum Correntropy criterion; Variational mode decomposition; Sample entropy (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (36)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220320879
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:214:y:2021:i:c:s0360544220320879

DOI: 10.1016/j.energy.2020.118980

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220320879