The study of a double-skin ventilated window integrated with CdTe cells in a rural building
Chuyao Wang,
Jie Ji,
Md Muin Uddin,
Bendong Yu and
Zhiying Song
Energy, 2021, vol. 215, issue PA
Abstract:
CdTe cells have many advantages such as high electrical efficiency, and low cost. Few studies on PV windows combined with CdTe cells exist. The PV windows investigated in the past were mainly designed for cooling needs. In this work, a double-skin ventilated window integrated with CdTe cells (CdTe-DSV) was proposed, which could meet seasonal thermal demands. A mathematical model of the proposed window was developed and validated against experimental data. Based on the model, firstly, the thermal comfort in a building with the proposed window was discussed. Secondly, the energy performance (including heat, daylight, PV output) of the proposed window was analyzed and compared with that of the a-Si-DSV window. Finally, the effects of cavity depth, and PV coverage ratio on energy performance were evaluated. The results indicated that the CdTe-DSV window could ensure a relatively neutral thermal sensation. The energy saving of heat transmission in winter and summer was 205.76kwh and 333.09kwh respectively. The CdTe-DSV window had a higher PV output than the a-Si-DSV window by 62%. The increase of PV coverage can decrease the cooling load and increase the heating load. Increasing the air cavity depth is always beneficial to energy saving.
Keywords: Double-skin ventilated window; Cadmium telluride cells; Thermal comfort; Heat; Daylight and PV output; Energy saving (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220321502
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:215:y:2021:i:pa:s0360544220321502
DOI: 10.1016/j.energy.2020.119043
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().