EconPapers    
Economics at your fingertips  
 

Effects of micro-combustor geometry and size on the heat transfer and combustion characteristics of premixed hydrogen/air flames

Alireza Rahbari, Sajad Homayoonfar, Esmaeil Valizadeh, Mohammad Reza Aligoodarz and Davood Toghraie

Energy, 2021, vol. 215, issue PA

Abstract: major challenge in the development of micro-combustors is flame instabilities—resulting in a non-uniform wall temperature distribution and lower combustion efficiency. To overcome these issues, this research investigates the combustion characteristics of premixed hydrogen/air mixture in a micro-combustor with a cavity, bluff body, rib with bluff body and rib configurations. A detailed chemical reaction mechanism is also developed which consists of 13 species and 19 reactions. The obtained results are validated with published experimental findings. Having the model validated, a parametric study has been conducted to examine the effect of thermal conductivity coefficient, equivalent ratio, aspect ratio and geometrical configurations on heat transfer and combustion characteristics of hydrogen/air flames. It is demonstrated that increasing the thermal conductivity coefficient improves the preheating of the fresh mixture at upstream. However, this causes more heat loss from the outer walls to the surroundings. Moreover, increasing the equivalence ratio of a mixture reduces the negative effects arising from the heat losses on combustion stability. At higher inlet velocities, the location of a maximum temperature shifts towards downstream, which reduces the flame and average wall temperature. Among these configurations, a micro-combustor with bluff body is a more promising option to improve the flame stability and combustion efficiency.

Keywords: Micro-combustor; Bluff body; Hydrogen/air combustion; Flame temperature (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422032168X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:215:y:2021:i:pa:s036054422032168x

DOI: 10.1016/j.energy.2020.119061

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:215:y:2021:i:pa:s036054422032168x