EconPapers    
Economics at your fingertips  
 

Battery state-of-health estimation based on a metabolic extreme learning machine combining degradation state model and error compensation

Lin Chen, Huimin Wang, Bohao Liu, Yijue Wang, Yunhui Ding and Haihong Pan

Energy, 2021, vol. 215, issue PA

Abstract: Accurate estimation of battery state-of-health (SOH) is of great importance for ensuring the safety and reliability of battery energy storage system. Due to the complicated degradation mechanism of batteries, the transfer application of SOH estimation for different types of the batteries with unknown usage levels is challenging. To solve this issue, a novel metabolic extreme learning machine (MELM) framework for SOH estimation is proposed in this study. A degradation state model based on the extreme learning machine (ELM) is developed to describe the complex battery degradation mechanism, and the established model can map the relationship between the degradation features and the degradation dynamics for different batteries. To realize SOH estimation at different usage levels with a few data, the metabolic mechanism is introduced to update the input of the degradation state model and reflect the latest trend of degradation. To reduce the errors caused by the metabolism, the grey model is adopted to extrapolate the trend of error accumulation and correct the estimation results. The prominent performances of the MELM framework are synthetically verified from different aspects, the results indicate the MELM framework can effectively realize the SOH estimation for different types of batteries with unknown usage levels.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422032185X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:215:y:2021:i:pa:s036054422032185x

DOI: 10.1016/j.energy.2020.119078

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:215:y:2021:i:pa:s036054422032185x