Facile preparation of core-shell Ag@SiO2 nanoparticles and their application in spectrally splitting PV/T systems
Ju Huang,
Xinyue Han,
Xiaobo Zhao and
Chunfeng Meng
Energy, 2021, vol. 215, issue PA
Abstract:
Several researchers have demonstrated that plasmonic nanofluids based filters can potentially enhance hybrid solar photovoltaic/thermal (PV/T) systems performance. In this work, we report a facile process for achieving silica-coated silver (Ag) nanoparticles using dimethylamine (DMA) as a basic solvent to induce tetraethyl orthosilicate (TEOS) hydrolysis. Then, the prepared Ag@SiO2 nanoparticles which have a controllable silica shell thickness are suspended in propylene glycol-CoSO4 hybrid fluid. Finally, the characteristics of the PV/T system filtered by the Ag@SiO2/CoSO4-PG nanofluids are evaluated based on the indoor test and photo-thermal conversion model. The results show that the nanoparticles prepared under optimized conditions, i.e., pH value of 8–9, water: ethanol volume ratio of 1:4, temperature of 25 °C, TEOS volume of 0.05 mL, and reaction time of 12 h, exhibit an absorption peak at 474 nm. Further, this study reveals that Ag@SiO2/CoSO4-PG nanofluid filter with concentration of 25.4 mg/L gives a reasonable spectral match with silicon concentrator solar cell according to the measured optical transmittance and the calculated filtering efficiency of 39.3%. The use of 25.4 mg/L Ag@SiO2/CoSO4-PG nanofluid filter produces a higher total efficiency of 63.3% and yields economic value enhancement of 67.8% compared to the PV only system when worth factor (w) is 3.
Keywords: Photovoltaic/thermal; Ag@SiO2 nanoparticles; Nanofluid; Spectral beam splitter (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220322180
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:215:y:2021:i:pa:s0360544220322180
DOI: 10.1016/j.energy.2020.119111
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().