Energy, exergy, exergoeconomic and exergo-environmental analyses of a large scale solar dryer with PCM energy storage medium
Halil Atalay and
Eda Cankurtaran
Energy, 2021, vol. 216, issue C
Abstract:
In this paper, performance, exergoeconomic and exergo-environmental assessments of a large scale solar dryer with energy storage medium were presented. The usability of the system for high capacity industrial drying processes in terms of performance and energy use costs compared to existing drying techniques in the literature was clearly indicated in the study. Thus, exergoeconomic and environmental sustainability analyses were handled together for the first time, and all performance values of a high capacity industrial solar dryer were determined in detail. The system components were examined separately in exergoeconomic analysis. As a result of the exergoeconomic analysis, it was found that the fans had the highest cost of exergy destruction with $ 0.2286/h and the lowest exergy efficiency with 55.96%. Therefore, it was concluded that fans were the most important component need to be developed. When the system was considered in terms of environmental impact analysis, energy payback time was designated as approximately 6.82 years. CO2 mitigation for the expected lifetime of the system was calculated as 99.60 tones. The performed evaluations indicated that the developed system was a highly efficient technology for the industrial drying process both in terms of energy use performance and environmental sustainability.
Keywords: Exergoeconomic analysis; Solar dryer; Dried of strawberry; Phase change materials; Exergo-environmental analysis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220323288
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:216:y:2021:i:c:s0360544220323288
DOI: 10.1016/j.energy.2020.119221
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().