A novel approach for preparing in-situ nitrogen doped carbon via pyrolysis of bean pulp for supercapacitors
Yan Ding,
Yunchao Li,
Yujie Dai,
Xinhong Han,
Bo Xing,
Lingjun Zhu,
Kunzan Qiu and
Shurong Wang
Energy, 2021, vol. 216, issue C
Abstract:
The preparation of activated carbon by complex and expensive nitrogen doping and activation process has been studied extensively. N-doped activated biochar or carbon material prepared from renewable and low-cost biomass has arisen more and more attention due to the hierarchical porous structure and abundant nitrogenous functional groups in the application of supercapacitors. Herein, a method for preparation of in-situ nitrogen doped activated carbon derived from bean pulp (BPC) by one-step carbonization and CO2 activation at 1073 K was proposed. The morphological structure, specific surface area (SSA), pore size and nitrogen-containing functional group compounds could be controlled by the adjustment of CO2 concentration. The maximum SSA could be up to 558.2 m2 g−1 for BPC. The N content increased from 5.0% to 10.0% with the increase of CO2 concentration from 0 to 50 vol%. In addition, pyridine, pyrrole, graphite, and nitrous oxide were detected and analyzed, in which pyridine and pyrrole nitrogen enhance the pseudocapacitance. A maximum specific capacitance of BPC-50 reached 106 F g−1 at 0.25 A g−1. The capacitance retention maintained 93% at 10 A g−1 after 20,000 cycles in the symmetrical supercapacitor with a 6 M KOH electrolyte.
Keywords: Bean pulp; Electrode carbon; Pyrolysis; CO2 activation; In-situ N-Doping; Symmetrical supercapacitor (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220323343
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:216:y:2021:i:c:s0360544220323343
DOI: 10.1016/j.energy.2020.119227
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().