EconPapers    
Economics at your fingertips  
 

Two-fluid simulation of moving grate waste incinerator: Comparison of 2D and 3D bed models

Zihong Xia, Jisheng Long, Shuai Yan, Li Bai, Hailiang Du and Caixia Chen

Energy, 2021, vol. 216, issue C

Abstract: CFD-based simulation models of large-scale moving grate combustor for biomass and municipal solid waste are not well established. Although a 3D transient two-fluid model provides dynamic coupling between the fuel bed and the freeboard, simulation of a whole incinerator is extremely computational intensive and difficult for industrial applications. In this paper, an efficient computational method is proposed where a 2D bed model is combined with a 3D steady furnace model. In the new approach, the bed model includes a transient two-fluid simulation using realistic grate geometry cut by the incinerator throat, which includes a dynamic coupling of heat and mass transfers between the fuel bed and the lower combustion chamber. The simulated bedtop profiles are then used as inlet conditions to run a 3D steady simulation of turbulent gas combustion for the whole furnace. The simulation results are validated with our previous 3D transient full-incinerator results (Xia et al., 2020) [1] and on-site measurement data. In addition, effects of particle size, waste throughput, and residence time on the bed incineration performance are investigated. Overall, the current computational method highly promotes the efficiency of modelling industrial moving grate combustors.

Keywords: Moving grate combustor; Two-fluid simulation; Direct bed-furnace coupling; 2D and 3D bed models; Steady and transient simulations (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220323641
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:216:y:2021:i:c:s0360544220323641

DOI: 10.1016/j.energy.2020.119257

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:216:y:2021:i:c:s0360544220323641