EconPapers    
Economics at your fingertips  
 

Catalytic cracking of biomass tar using Ni nanoparticles embedded carbon nanofiber/porous carbon catalysts

Shuping Zhang, Haoxin Yin, Jiaxing Wang, Shuguang Zhu and Yuanquan Xiong

Energy, 2021, vol. 216, issue C

Abstract: The major obstacles for catalytic cracking of biomass tar have been known as the low tar removal efficiency and catalyst deactivation. In view of this, the novel Ni nanoparticles embedded carbon nanofiber/porous carbon catalysts were synthesized by the method of hydrothermal treatment combined with carbothermal reduction. The properties of catalysts were evaluated by characterization of N2 adsorption-desorption, SEM, XRD, TEM, H2-TPRand Raman, meanwhile the evolutionary mechanism of catalysts was also proposed. The tar catalytic cracking tests indicated that the Ni0.30@CF/PCs exhibited the favorable catalytic activity with the high tar conversion efficiency (94.78%) as well as the better catalytic stability at the catalytic cracking temperature of 700 °C compared to other catalysts. In the case of Ni0.30@CF/PCs, the carbon nanofiber/porous carbon composites with hierarchical micro-mesoporous structure and high graphitization degree as well as the Ni nanoparticles embedded in catalyst support with the strong metal-support interaction exhibited the favorable activity-structure relationship. In addition, the Ni0.30@CF/PCs catalyst also presented the high tar conversion efficiency of 93.31% after 10 cycles, which was due to the high resistance towards coke deposition and sintering of metallic Ni covered by graphite layer from the carbothermal reduction process.

Keywords: Biomass tar; Catalytic cracking; Ni nanoparticles; Carbon nanofiber (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220323926
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:216:y:2021:i:c:s0360544220323926

DOI: 10.1016/j.energy.2020.119285

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:216:y:2021:i:c:s0360544220323926