Optimal design of organic Rankine cycle recovering LNG cold energy with finite heat exchanger size
Hong Wone Choi,
Sun-Ik Na,
Sung Bin Hong,
Yoong Chung,
Dong Kyu Kim and
Min Soo Kim
Energy, 2021, vol. 217, issue C
Abstract:
An optimization study, under a size constraint, was carried out for an organic Rankine cycle (ORC) combined with an LNG regasification plant for recovering LNG cold energy. Typically, many researchers approached to an optimization problem by assuming pinch point or minimum approach temperature difference. As a different point of view, the size constraint was considered in that resources such as thermal energy and equipment size are limited in a real problem. Given this situation, adequate allocation of finite resources is an important issue for the system to maximize performance. Thus, the aim of this study is to understand how to properly utilize the resources when LNG cold energy and total conductance of heat exchangers are limited. Accordingly, the influences of heat duty allocation, UA allocation, and superheating a turbine’s intake on net power were mainly taken into account. Results indicate that, when total conductance for system design increases, the ORC should take more heat duty and total conductance should be weighted to an evaporator. In most cases, the size of heat exchangers should be weighted in the order of evaporator, condenser, and trim heater, provided that total conductance for system design is sufficiently available.
Keywords: LNG cold Energy; Organic Rankine cycle; Optimal allocation; Size constraint; Working fluid (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220323756
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:217:y:2021:i:c:s0360544220323756
DOI: 10.1016/j.energy.2020.119268
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().