Kinetic study on the CO2 gasification of biochar derived from Miscanthus at different processing conditions
Hong Tian,
Qingsong Hu,
Jiawei Wang,
Donglin Chen,
Yang Yang and
Anthony V. Bridgwater
Energy, 2021, vol. 217, issue C
Abstract:
The CO2 gasification is an emerging process that can improve the quality of syngas and enhance the CO2 circular utilisation. This paper presents a comprehensive analysis on the CO2 gasification of Miscanthus-derived biochar produced at varying processing conditions. The gasification behaviour, kinetics and biochar reactivity were investigated and the correlations to the biochar preparation conditions and their microstructure were developed. Results showed that the preparation and gasification reaction conditions had major impact on the biochar reactivity. The order of significance that affected the biochar reactivity was gasification temperature, biochar preparation temperature and processing atmosphere. Increasing heating rate could enhance the biochar reactivity, while increasing preparation temperature could reduce the reactivity in N2 and He atmosphere. At 600 and 1000 °C, He atmosphere resulted in the most activity biochar, followed by N2 and CO2. At 800 °C, CO2 atmosphere gave the highest reactivity, followed by He and N2. The Activation Energy (E) of gasification reaction calculated by the Hybrid Model (HM) was mainly in the range of 78.09–212.46 kJ mol−1. The E decreased with the increase of carbon conversion rate. A great kinetic compensation effect between E and A was identified during the CO2 gasification process.
Keywords: Biochar processing; Biochar reactivity; Pyrolysis; CO2 Gasification; Kinetic modelling (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220324488
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:217:y:2021:i:c:s0360544220324488
DOI: 10.1016/j.energy.2020.119341
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().