EconPapers    
Economics at your fingertips  
 

A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting

Ping Jiang, Zhenkun Liu, Xinsong Niu and Lifang Zhang

Energy, 2021, vol. 217, issue C

Abstract: Wind speed forecasting is gaining importance as the share of wind energy in electricity systems increases. Numerous forecasting approaches have been used to predict wind speeds. However, considering the differences in wind speed time-series, there is no universal approach that has proven to be accurate under all circumstances. In our study, a combined prediction system is proposed, which consists of four parts: optimal sub-model selection, point prediction based on a modified multi-objective optimization algorithm, interval forecasting based on distribution fitting, and forecasting system evaluation. The developed combined system integrates the merits of the sub-models and provides accurate point and interval forecasting performance. The experimental results reveal that the proposed combined forecasting system can provide effective wind speed point and interval forecasts. The absolute percentage error values of the proposed system for point forecasting are 2.9220%, 3.1696%, and 4.8358% at Site 1 and 2.2719%, 2.5882%, and 3.4799% at Site 2 for one-, two-, and three-step forecasts, respectively. Therefore, the proposed system is deemed more useful for the scheduling and management of electric power systems than other benchmark models.

Keywords: Artificial intelligence; Combined forecasting system; Data preprocessing; Sub-model selection strategy; Wind speed forecasting (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (41)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220324683
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:217:y:2021:i:c:s0360544220324683

DOI: 10.1016/j.energy.2020.119361

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:217:y:2021:i:c:s0360544220324683