A novel approach to investigate the thermal comfort of the lightweight relocatable building integrated with PCM in different climates of Kazakhstan during summertime
Indira Adilkhanova,
Shazim Ali Memon,
Jong Kim and
Almas Sheriyev
Energy, 2021, vol. 217, issue C
Abstract:
This study investigates the potential of PCM and natural ventilation to strengthen the thermal comfort inside the lightweight relocatable building located in Kazakhstan during the summer period. The quantification of the impact of the PCM on the thermal comfort was accomplished using the concepts of maximum operative temperature reduction and discomfort index. A novel indicator of Total Discomfort Change (TDC) was introduced to select the optimum PCM. Thereafter, the behaviour of the optimised PCM was comprehensively evaluated through activation of PCM and PCM storage efficiency. In all cities, PCM 26 + NV showed the best performance achieving the TDC values of up to 1818 and its storage efficiency values were up to 39.1%. Then, the analysis of the effect of real PCMs on the thermal comfort conditions was provided. The investigation revealed that RT 26 + NV was the most efficient in all cities achieving the TDC values of up to 1977. Thereafter, the impact of climate change under RCP 8.5 emission scenario (2095) was assessed and RT 28 + NV and RT 26 + NV were found to be optimum combinations. Overall, the optimum configuration of PCM with natural ventilation can be used for improving the thermal comfort conditions during the summertime in all cities of Kazakhstan.
Keywords: Phase change material; Discomfort Index; Total Discomfort Change; PCM storage efficiency; Lightweight relocatable building (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422032497X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:217:y:2021:i:c:s036054422032497x
DOI: 10.1016/j.energy.2020.119390
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().