EconPapers    
Economics at your fingertips  
 

Redox-additive electrolyte–driven enhancement of the electrochemical energy storage performance of asymmetric Co3O4//carbon nano-onions supercapacitors

Ganesh Dhakal, Debananda Mohapatra, Tensangmu Lama Tamang, Moonyong Lee, Yong Rok Lee and Jae-Jin Shim

Energy, 2021, vol. 218, issue C

Abstract: For efficient energy storage, Co3O4@nickel foam exhibiting a plate-like (p-Co3O4) and grass-like (g-Co3O4) nanostructure were prepared as binder-free supercapacitor electrode materials. The electrochemical performance of the electrodes was tested using a redox-additive electrolyte (RAE). The homogeneously grown grass-like nanostructure (g-Co3O4) exhibited superior electrochemical performance to those with the plates-like structure (p-Co3O4) in a KOH electrolyte. In addition, the electrochemical performance of g-Co3O4 was improved using an RAE in a 3 M KOH solution. Remarkably, the specific capacitance of g-Co3O4 (1560 F g−1) was increased to 6580 F g−1, approximately 4-fold just by varying the RAE concentration in KOH. Carbon nano-onion (CNO) in the form of multi-layer fullerene was introduced as a negative electrode material. Owing to the more favorable morphology and properties of CNO such as exohedral structure, small diameter, high electrical conductivity, and relatively easy aqueous media dispersion than activated carbon and graphene, the as-fabricated asymmetric Co3O4//CNO supercapacitor delivered a high energy density of 42.5 Wh kg−1 and a high power density of 12.8 kW kg−1.

Keywords: Carbon nano-onions; Binder-free; Redox-additive electrolyte; High-performance; Asymmetric supercapacitor (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220325433
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:218:y:2021:i:c:s0360544220325433

DOI: 10.1016/j.energy.2020.119436

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:218:y:2021:i:c:s0360544220325433