Thermodynamic optimization of the superheater during switching the load transient processes
Chaoyang Wang,
Ming Liu,
Yongliang Zhao and
Junjie Yan
Energy, 2021, vol. 218, issue C
Abstract:
The boiler superheater undergoes load cycling transients, once the thermal power plant participates in peak shaving. Thermodynamic optimization of a superheater is carried out by optimizing the flowrate/temperature matches between the hot and cold fluids during switching the load rate from 0.75 to 1.00. On the basis of a dynamic model of the superheater, the transient thermal performance is presented. Furthermore, the exergy delivery efficiency of the superheater was analyzed. The superheater outlet temperatures of hot fluid, metal wall, and cold fluid are highly affected when regulating work fluid inlet flowrates/temperatures. During switching the load transient, when increasing the hot fluid flowrate amplitude and variation rate by 50%, the average exergy efficiency (ηE,avg) of the superheater can improve by 1.04% and 0.13%, respectively. When increasing the cold fluid inlet temperature by 5%, ηE,avg can improve by 1.16%. When increasing the hot fluid inlet temperature by 5%, ηE,avg decreases by 0.74%. The exergy efficiency of the superheater is more sensitive to regulating temperature match than the flowrate match during switching the load transient process.
Keywords: Boiler superheater; Thermodynamic optimization; Switching load; Flowrate match; Exergy analysis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220325536
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:218:y:2021:i:c:s0360544220325536
DOI: 10.1016/j.energy.2020.119446
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().