EconPapers    
Economics at your fingertips  
 

Thermodynamics, kinetics and reaction mechanism of hydrogen production from a novel Al alloy/NaCl/g-C3N4 composite by low temperature hydrolysis

Ming Su, Haiping Hu, Jianchang Gan, Wenhua Ye, Wenhua Zhang and Huihu Wang

Energy, 2021, vol. 218, issue C

Abstract: Real-time hydrogen production at low temperature can effectively solve the problem of hydrogen storage and transportation in cold area and plateau region. In this study, a novel Al alloy/NaCl/g-C3N4 composite with enhanced low temperature reactivity for hydrogen production has been synthesized by mechanical ball milling method. The feasibility of Al-water reaction at the temperature of 253.15–373.15 K was firstly proved by thermodynamic calculation. The hydrogen generation performance was studied in tap water at 298.15 K and 23 wt% NaCl aqueous solution at low temperature of 253.15–273.15 K. The results indicated that the addition of g-C3N4 can effectively promoted the hydrolysis of activated Al composites. Hydrogen yield of Al alloy/NaCl/g-C3N4 composite with 1 g of g-C3N4 addition reached 1006 mL·gAl−1 and the induction time of reaction was 90 s at 253.15 K, while that of Al alloy was only 230 mL·gAl−1 and 1120s respectively. It was supposed that the addition of g-C3N4 effectively reduced the size of NaCl particles and promoted their uniform distribution in Al matrix and more cracks were generated. The kinetics and reaction mechanism using Al alloy/NaCl/g-C3N4 composite were discussed. This study provides a new idea for the synthesis of Al composites with high reactivity at low temperature.

Keywords: Al; Hydrogen; g-C3N4; Mechanical ball milling; Mechanism (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220325962
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:218:y:2021:i:c:s0360544220325962

DOI: 10.1016/j.energy.2020.119489

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:218:y:2021:i:c:s0360544220325962