EconPapers    
Economics at your fingertips  
 

ReaxFF simulations of the synergistic effect mechanisms during co-pyrolysis of coal and polyethylene/polystyrene

Dikun Hong, Ping Li, Ting Si and Xin Guo

Energy, 2021, vol. 218, issue C

Abstract: In this paper, the co-pyrolysis behaviors of Zhundong coal with polyethylene (PE) and polystyrene (PS) are investigated using reactive molecular dynamics (ReaxFF MD) simulation. The individual pyrolysis simulation results are in good agreement with experimental results. The co-pyrolysis simulation results show that coal promotes the primary decomposition of PE at low temperatures, but shows little effect on PE pyrolysis at high temperatures. It is also found that coal has little effect on PS pyrolysis during coal/PS co-pyrolysis at all given temperatures. PE and PS have no effects on coal pyrolysis at low temperatures, but significantly promote coal char decomposition and inhibit the secondary reactions of coal tar at high temperatures. The promoting effect of PS on coal pyrolysis is more pronounced than that of PE. The interaction mechanisms between coal and plastics are revealed by analyzing the distributions of H and OH radicals. The kinetic parameters for the individual pyrolysis of coal, PE and PS, as well as the co-pyrolysis of coal and PE/PS are determined using the first-order reaction model. The results suggest that the synergistic effect significantly reduces the activation energy for coal/PE co-pyrolysis, while has little effect on the activation energy for coal/PS co-pyrolysis.

Keywords: Zhundong coal; Polyethylene; Polystyrene; Co-pyrolysis; ReaxFF (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220326608
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:218:y:2021:i:c:s0360544220326608

DOI: 10.1016/j.energy.2020.119553

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:218:y:2021:i:c:s0360544220326608