EconPapers    
Economics at your fingertips  
 

Numerical evaluation of free gas accumulation behavior in a reservoir during methane hydrate production using a multiple-well system

Tao Yu, Guoqing Guan, Abuliti Abudula, Dayong Wang and Yongchen Song

Energy, 2021, vol. 218, issue C

Abstract: This study aimed to investigate the free gas accumulation behavior in a reservoir using a multiple-well system for methane hydrate production achieved by depressurization. Twenty-year simulations of gas production from a large-scale 3D methane hydrate reservoir model with different reservoir permeabilities were conducted, and the effects of different reservoir and operating conditions on the free gas accumulation behavior were fully examined. The simulation results indicated that the free gas accumulation behavior was affected by the reservoir permeability, and methane gas was inclined to accumulate within a certain permeability range, which was defined as the “free gas accumulation zone” for the first time. For an actual methane hydrate reservoir with a porosity of 0.31–0.51 and an initial hydrate saturation of 0.34–0.54, the free gas accumulation zone was estimated to be 37–145 mD at most. On the other hand, a low wellbore pressure could contribute to enhancing gas recovery by narrowing the free gas accumulation zone. In addition, the free gas accumulation zone was dramatically enlarged with the increase in well spacing, so a proper well spacing should be carefully designed to avoid the free gas accumulation zone. The prediction method proposed in this study could be applied to future commercial gas production from actual methane hydrate deposits achieved by depressurization using multiple-well systems.

Keywords: Methane hydrate; Free gas; Multiple-well system; Blind area effect; Gas accumulation zone (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220326670
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:218:y:2021:i:c:s0360544220326670

DOI: 10.1016/j.energy.2020.119560

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:218:y:2021:i:c:s0360544220326670