EconPapers    
Economics at your fingertips  
 

Experimental analysis of CO/H2 syngas with NOx and SOx reactions in pressurized oxy-fuel combustion

Donghee Kim, Hyungjun Ahn, Won Yang, Kang Y. Huh and Youngjae Lee

Energy, 2021, vol. 219, issue C

Abstract: A pressurized oxy-fuel combustion system is a technology for carbon capture and storage with a low efficiency penalty. In this study, the characteristics of combustion, heat transfer, and NOx/SOx emissions at various pressures were investigated using a lab-scale pressurized oxy-fuel combustion system. A gaseous fuel, composed of CO and H2, and pure oxygen were considered. The internal flue gas recirculation was induced by the inner wall to control the high oxy-flame temperature. The total heat recovery rate determined using the water jacket is 3% higher at 10 barg compared with atmospheric conditions, although the combustion temperature is lower. The heat flow rate increased by a higher H2O fraction in flue gas because the emissivity of H2O is higher than that of CO2. Under the condition of low H2O in flue gas, NOx and SOx simultaneously decreased, by approximately 50% and 63% at 10 barg, respectively. The concentrations of NOx and SOx with a higher H2O contents condition in flue gas decreased by 87% and 93% respectively at 10 barg, compared with atmospheric conditions. The effects of H radicals and the H2O fraction on the NOx and SOx oxidation and decrease were identified.

Keywords: Pressurized combustion; Syngas; Oxy-fuel combustion; Heat transfer rate; NOx/SOx reaction (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220326578
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:219:y:2021:i:c:s0360544220326578

DOI: 10.1016/j.energy.2020.119550

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220326578