Techno-economic-environmental investigation of various biomass types and innovative biomass-firing technologies for cost-effective cooling in India
Meisam Sadi,
Krishna Hara Chakravarty,
Amirmohammad Behzadi and
Ahmad Arabkoohsar
Energy, 2021, vol. 219, issue C
Abstract:
In the present study, a novel design of large-scale biomass-based heat-driven building cooling system is proposed and investigated for different regions of India. The study is enriched by a thorough benchmarking analysis of various scenarios (24 scenarios in total) for assessing the influence of different types of biomass, various configurations of the cooling system, and different biomass heater layouts on thermodynamic, economic, and environmental aspects of the proposed solution. For this, developing a MATLAB code, hourly, monthly, and annual comparisons are made to ascertain the best scenario from different aspects. The economic investigations reveal the superiority of the scenario comprising a specific design of biomass-heater using Prosopis and double-effect chiller with the lowest levelized cost of cooling (LCOC) of 0.031 $/kWh. The integration of a double-effect chiller with this heater using wood chips leads to the lowest emission index of 0.19 kg/kWh. The results further demonstrate that the LCOC is highly sensitive to the fluctuation of the cost of the biomass type, which is a function of availability in different regions of India. Therefore, the study is a secure reference indicating which scenario would result in the best techno-economic-environmental performance among all possibilities in different areas of the country.
Keywords: Cost-effective cooling; Green production; Biomass-firing heaters; Heat-driven chillers; Various biomass sources (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220326682
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:219:y:2021:i:c:s0360544220326682
DOI: 10.1016/j.energy.2020.119561
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().