EconPapers    
Economics at your fingertips  
 

A hybrid multi-objective optimizer-based model for daily electricity demand prediction considering COVID-19

Hongfang Lu, Xin Ma and Minda Ma

Energy, 2021, vol. 219, issue C

Abstract: Electricity consumption has been affected due to worldwide lockdown policies against COVID-19. Many countries have pointed out that electricity supply security during the epidemic is critical to ensuring people’s livelihood. Accurate prediction of electricity demand would act a more important role in ensuring energy security for all the countries. Although there have been many studies on electricity forecasting, they did not consider the pandemic, and many works only considered the prediction accuracy and ignored the stability. Driven by the above reasons, it is necessary to develop an electricity consumption prediction model that can be well applied in the pandemic. In this work, a hybrid prediction system is proposed with data processing, modelling, and optimization. An improved complete ensemble empirical mode decomposition with adaptive noise is used for data preprocessing, which overcomes the shortcomings of the original method; a multi-objective optimizer is adopted for ensuring the accuracy and stability; support vector machine is used as the prediction model. Taking daily electricity demand of US as an example, the results prove that the proposed hybrid models are superior to benchmark models in both prediction accuracy and stability. Moreover, selection of input parameters is discussed, and the results indicate that the model considering the daily infections has the highest prediction accuracy and stability, and it is proved that the proposed model has great potential in real-world applications.

Keywords: Electricity demand; Multi-objective optimizer; Prediction; Support vector machine; Denoising; COVID-19 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422032675X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:219:y:2021:i:c:s036054422032675x

DOI: 10.1016/j.energy.2020.119568

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:219:y:2021:i:c:s036054422032675x