EconPapers    
Economics at your fingertips  
 

Probabilistic real-time deep-water natural gas hydrate dispersion modeling by using a novel hybrid deep learning approach

Jihao Shi, Junjie Li, Asif Sohail Usmani, Yuan Zhu, Guoming Chen and Dongdong Yang

Energy, 2021, vol. 219, issue C

Abstract: Computational Fluid Dynamic (CFD) has been widely used for the gas release and dispersion modeling, which however could not support real-time emergency response planning due to its high computation overhead. Surrogate models offer a potential alternative to rigorous computational approaches, however, as the point-estimation alternatives, the existing neural network-based surrogate models are not able to quantify the uncertainty of the released gas spatial concentration. This study aims to fill a gap by proposing an advanced hybrid probabilistic Convolutional-Variational Autoencoder-Variational Bayesian neural network (Conv-VAE-VBnn). Experimental study based on a benchmark simulation dataset was conducted. The results demonstrated the additional uncertainty information estimated by the proposed model contributes to reducing the harmful effect of too ‘confidence’ of the point-estimation models. In addition, the proposed model exhibits competitive accuracy with R2 = 0.94 compared and real-time capacity with inference time less than 1s. Latent size Nz = 2, noise σz=0.1 and Monte Carlo sampling number m = 500 to ensure the model’s real-time capacity, were also given. Overall, our proposed model could provide a reliable alternative for constructing a digital twin for emergency management during the exploration and exploitation of marine natural gas hydrate (NHG) in the near future.

Keywords: Marine natural hydrate gas; Probabilistic dispersion modeling; Convolution variational autoencoder; Variational Bayesian neural network; Uncertainty estimation of spatial features; Digital twin of emergency management (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220326797
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:219:y:2021:i:c:s0360544220326797

DOI: 10.1016/j.energy.2020.119572

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220326797