Characteristics of two-stage air gasification of polystyrene with active carbon as a tar removal agent
Yong-Seong Jeong,
Jong-Woo Kim,
Myung-Won Seo,
Tae-Young Mun and
Joo-Sik Kim
Energy, 2021, vol. 219, issue C
Abstract:
Air gasification of polystyrene was conducted using a two-stage gasifier consisting of a fluidized bed and a tar-cracking reactor filled with active carbon. The aim was to obtain a hydrogen-rich producer gas with a low level of tar. In addition to the possibility of tar removal, the effects of the reaction temperature and equivalence ratio on the producer gas quality were investigated. In this study, it was found that the gasification of polystyrene had different characteristics to the gasification of other plastic, resulting in a high production of char. Active carbon played a crucial role, significantly decreasing the tar content in gas to 11 mg/Nm3. Furthermore, gasification with active carbon produced a gas having a high content of hydrogen (26 vol%). The change in fluidized bed gasifier temperature within the range of 700–900 °C exerted no significant effects on the gas quality. In contrast, a high tar-cracking reactor temperature clearly increased hydrogen and carbon monoxide contents. With an increasing equivalence ratio, oxidation of char was promoted, resulting in a significant increase in gas production and carbon oxides. The current study showed a good possibility for the recycling of polystyrene via gasification, producing a clean and hydrogen-rich gas.
Keywords: Polystyrene; Two-stage gasification; Active carbon; Tar; Hydrogen; Carbon monoxide (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220327882
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:219:y:2021:i:c:s0360544220327882
DOI: 10.1016/j.energy.2020.119681
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().