Coupling properties and parametric optimization of a photovoltaic panel driven thermoelectric refrigerators system
Tianjun Liao,
Qijiao He,
Qidong Xu,
Yawen Dai,
Chun Cheng and
Meng Ni
Energy, 2021, vol. 220, issue C
Abstract:
The achievement of temperature and heat management by combining the photovoltaic (PV) power generation and semiconductor thermoelectric refrigerators (TERs) is significant for developing high performance and durable energy conversion systems. In this work, a new energy system combining PV with TERs is proposed and theoretically evaluated. At a given solar irradiance of 200 W m−2, the electrical matching properties between two subsystems are studied and the TERs’ operating regions are provided. The optimal efficiency of 13.9% is obtained by reasonably selecting the TERs’ number and the structure parameters. Further, the effects of the solar irradiance on the optimal efficiency and the operating conditions are analyzed. The parametric optimal regions are identified to achieve a trade-off between the efficiency and the cooling heat flow rate. The impacts of the diode’s ideal factor, the TERs’ temperature span, and the PV panel’s series internal resistance and shunt resistance on the system are revealed. The proposed model and the analysis may provide valuable strategies for designing PV-driven TERs.
Keywords: PV panel; Thermoelectric refrigerator; Cooling heat flow; Coupling properties; Parametric optimization (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221000475
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:220:y:2021:i:c:s0360544221000475
DOI: 10.1016/j.energy.2021.119798
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().