EconPapers    
Economics at your fingertips  
 

Effect of a novel piston geometry on the combustion process of a light-duty compression ignition engine: An optical analysis

José V. Pastor, Antonio García, Carlos Micó, Felipe Lewiski, Alberto Vassallo and Francesco Concetto Pesce

Energy, 2021, vol. 221, issue C

Abstract: The development of new piston geometries has shown great potential to achieve the low levels of soot emissions required by regulation. Thus, the present paper aims to characterize the influence of a new piston design over combustion process. It is characterized by the introduction of protrusions around the periphery of the bowl, evenly spaced. The performance of this geometry is compared to other geometries that have been extensively analyzed in literature, under similar operating conditions. To achieve this objective, a single cylinder optical compression ignition engine was used with full-quartz pistons representing three bowl geometries: re-entrant, stepped lip and wave-stepped lip. Two optical techniques (OH∗ chemiluminescence and Natural Luminosity-NL) were applied for identifying the near-stoichiometric zones and the differences in the combustion evolution. The flame movement was analyzed by applying the combustion image velocimetry (CIV) algorithms. In addition, an in-cylinder pressure analysis was performed for each piston at 4.5 bar and 7.5 bar IMEP and the differences in terms of Rate of Heat Release were highlighted. A more intense reverse flow was clearly identified when using wave protrusions inside the bowl. The stepped lip and wave-stepped lip bowl present faster late cycle oxidation with much near-stoichiometric zones than re-entrant piston.

Keywords: Optical engines; Optical techniques; Bowl geometry; Compression ignition; Combustion image velocimetry (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422100013X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:221:y:2021:i:c:s036054422100013x

DOI: 10.1016/j.energy.2021.119764

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:221:y:2021:i:c:s036054422100013x