Numerical simulation of gas production from permafrost hydrate deposits enhanced with CO2/N2 injection
Jing-Yu Kan,
Yi-Fei Sun,
Bao-Can Dong,
Qing Yuan,
Bei Liu,
Chang-Yu Sun and
Guang-Jin Chen
Energy, 2021, vol. 221, issue C
Abstract:
A new numerical simulator was developed from the widely used CH4 hydrate simulator TOUGH + HYDRATE to realize the simulation of hydrate exploitation by CO2/N2–CH4 replacement. Focusing on actual hydrate reservoir, CO2/N2 injection combined with depressurization in a practical continuous injection-production mode was applied for gas production. The influence of feed gas composition and injection pressure on CO2 sequestration and CH4 production was investigated. Moreover, we conducted a fair comparison and revealed the advantages of CO2/N2 injection over two traditional methods in gas/water production performance. During gas injection, a continuous CO2/N2 separation process under stratum environment was observed, and the whole gas replacement process can be roughly summarized as a continuous cycle of CH4 hydrate dissociation and CO2/N2 hydrate formation. Increasing N2 mole fraction from 30% to 50% significantly enhanced the CH4 production efficiency, while its increase from 50% to 100% mainly resulted in more N2 production and higher injection-production ratio. Raising the injection pressure from 4.5 to 5 MPa improved CH4 recovery by 1.5 times, while increase from 5 to 7 MPa reduced CH4 recovery by 8.3%. A favorable CH4 recovery with relatively low cost can be achieved by finding an appropriate balance between CH4 release and CO2 sequestration.
Keywords: Permafrost hydrate; Numerical simulation; CO2/N2 continuous injection; CH4 production; CO2 sequestration; CO2/N2–CH4 replacement (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221001687
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:221:y:2021:i:c:s0360544221001687
DOI: 10.1016/j.energy.2021.119919
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().