EconPapers    
Economics at your fingertips  
 

Data informed physical models for district heating grids with distributed heat sources to understand thermal and hydraulic aspects

Natasa Nord, Mohammad Shakerin, Tymofii Tereshchenko, Vittorio Verda and Romano Borchiellini

Energy, 2021, vol. 222, issue C

Abstract: The aim of the study was to develop data informed physical models for simulation of district heating (DH) grids for better presentation of hydraulic and thermal aspects in the DH grids integrating heat prosumers. A DH grid organized as a ring and integrating a heat prosumer from a data center was analyzed. In this study, an extensive analysis for thermal and hydraulic aspects of theDH grid considering different configurations of distributed sources was performed. Different configurations for the prosumer connection, the return to return and the return to supply, together with the pressure and temperature control, were investigated. The results showed that increasing the share of renewable heat from the prosumer to the DH grid caused a pressure imbalance in substations close to it. Variable speed pump control was the solution for these issues and it gave up to 34% electricity savings. Lowering temperature levels in the DH network led to a decrease in DH heat losses of up to 14%. The return to supply configuration showed advantages in integrating the prosumer, as regards lower return temperatures and better waste heat utilization. The results indicated the main hydraulic and thermal features of integrating the prosumer in the DH grid.

Keywords: District heating; Prosumer; Energy performance; Waste heat utilization (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221002140
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:222:y:2021:i:c:s0360544221002140

DOI: 10.1016/j.energy.2021.119965

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:222:y:2021:i:c:s0360544221002140