Influencing factors on the vibrational and rotational temperatures in the spark discharge channel
Shuai Huang,
Tie Li,
Zhifei Zhang,
Linyan Wang,
Xiao Yu,
Ming Zheng,
Rundai Yang and
Xinwu Zhao
Energy, 2021, vol. 222, issue C
Abstract:
Plasmas are widely used in engines as ignition sources and combustion assistances. Quantitative and qualitative analyses of the effects of plasmas on ignition are of great importance for improving engine performance, but with challenges. In this study, the vibrational and rotational temperatures are calculated based on the N2 second positive molecular emission spectra, with different discharge powers, ambient pressures, gas compositions, and spark plug gap sizes. The spatial distribution of the rotational temperature is also investigated. With an increased discharge power, the vibrational and rotational temperatures increase, while the difference between the vibrational and rotational temperatures decreases. As the pressure ambient increases from 0.3 to 5.0 bar, the vibrational temperature decreases initially and increases subsequently. The rotational temperature increases with the increased pressure, while the temperature difference decreases. The gas composition and gap size greatly affect the vibrational and rotational temperatures. The rotational temperature increases with the enlarged gap size, and the difference between the vibrational and rotational temperatures decreases. For the spatial distribution of the rotational temperature in the spark gap, the highest rotational temperature occurs near the center of the spark gap. Meanwhile, the rotational temperature near the central electrode is higher than that near the ground electrode.
Keywords: Spark discharge plasma; Emission spectra; Vibrational and rotational temperatures; Environmental parameters; Spatial distribution (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221002449
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:222:y:2021:i:c:s0360544221002449
DOI: 10.1016/j.energy.2021.119995
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().