Multi-objective benchmark for energy management of dual-source electric vehicles: An optimal control approach
Bảo-Huy Nguyễn,
Thanh Vo-Duy,
Carlos Henggeler Antunes and
João Pedro F. Trovão
Energy, 2021, vol. 223, issue C
Abstract:
This paper proposes a novel method to develop a multi-objective optimal energy management strategy (EMS) for hybrid battery/supercapacitor (SC) electric vehicles. The method is based on an alternative approach of using Pontryagin’s minimum principle (alt-PMP), which is superior to dynamic programming in terms of computational effort while obtaining better performance. The novel multi-objective EMS allocates the battery and SC powers to minimize the battery degradation and the SC subsystem losses. The proposed approach deduces transparent analytical forms of the optimal solutions, which have been rarely discussed in the literature. The results form a Pareto optimal (nondominated) front displaying the trade-offs associated with the objectives, which can serve as a benchmark to evaluate other real-time control strategies. Numerical investigations are carried out to validate the advantages of the proposed method. The benchmark role of the obtained nondominated front is illustrated by comparing it to the well-known filter-based strategy. Moreover, this study shows the conversion of the Pareto front to an “ultimate utopia point” corresponding to the ideal case of the SC subsystem efficiency. The proposed approach can be extended to dimensioning problems, to develop real-time EMS, and to more complex multi-source systems in future works.
Keywords: Multi-objective optimization; Electric vehicle; Optimal control; Pontryagin’s minimum principle; Battery; Supercapacitor; Hybrid energy storage system (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221001067
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:223:y:2021:i:c:s0360544221001067
DOI: 10.1016/j.energy.2021.119857
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().