Demonstration of 0.1 MWth pilot-scale pressurized oxy-fuel combustion for unpurified natural gas without CO2 dilution
Donghee Kim,
Won Yang,
Kang Y. Huh and
Youngjae Lee
Energy, 2021, vol. 223, issue C
Abstract:
The pressurized oxy-fuel combustion system is renowned for its compatibility with carbon capture and storage technologies. This study aims to investigate the characteristics and potential of the pressurized oxy-fuel combustion system using unpurified natural gas and pure oxygen without CO2 dilution to decrease the cost of the purification process and the penalty of plant efficiency. The pilot-scale pressurized oxy-fuel combustion system was successfully demonstrated to study the characteristics of combustion, heat transfer, and NOx emission. For a given heat input, the mean temperature decreased, despite an increase in the adiabatic flame temperature due to pressurization. The heat recovery rate of the coolant in all the tested cases was approximately 84–86%. The radiative heat transfer was enhanced by the flue gas that was mainly composed of H2O and CO2 at high pressures. The NOx concentration decreased with the reduction in mean temperature, which suppressed the formation of thermal NO. The proportion of NO2 in NOx was approximately 25–28% at a pressure of 10 bar with respect to various N2 fractions. With respect to the high pressure and heat input, the NOx concentration of the lower momentum burner was decreased via the reduction of hot-spots and peak temperature.
Keywords: Pressurized combustion; Oxy-flame; Heat transfer; Methane; NOx (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422100270X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:223:y:2021:i:c:s036054422100270x
DOI: 10.1016/j.energy.2021.120021
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().