EconPapers    
Economics at your fingertips  
 

A point prediction method based automatic machine learning for day-ahead power output of multi-region photovoltaic plants

Wei Zhao, Haoran Zhang, Jianqin Zheng, Yuanhao Dai, Liqiao Huang, Wenlong Shang and Yongtu Liang

Energy, 2021, vol. 223, issue C

Abstract: Solar power generation (SPG) is essentially dependent on spatial and meteorological characteristics which makes the planning and operation of power systems difficult. To promote the integration of solar power into electric power grid, accurate prediction of geographically distributed SPG is needed. In this paper, we present a combined method for day-ahead SPG prediction of multi-region photovoltaic (PV) plants. First, automatic machine learning (AML) is applied to generate the most suitable ensemble prediction model with optimal parameters and then an improved genetic algorithm (GA) is implemented which processes the candidate features by assigning appropriate operators. To achieve more accurate forecast results as well as mine the interpretable relationship between SPG and related weather or PV system factors, the SPG physical model is taken into account. The method performance is evaluated by the real SPG data along with meteorological variables of multi-region PV plants in Hokkaido from 2016 to 2018. Results indicate that the combined method provides acceptable accuracy and outperforms several baselines and other methods used for comparison.

Keywords: Solar power generation prediction; Automatic machine learning; Genetic algorithm; Multi-region photovoltaic plants (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221002759
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:223:y:2021:i:c:s0360544221002759

DOI: 10.1016/j.energy.2021.120026

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544221002759