EconPapers    
Economics at your fingertips  
 

Optimizing wind farms layouts for maximum energy production using probabilistic inference: Benchmarking reveals superior computational efficiency and scalability

Aditya Dhoot, Enrico G.A. Antonini, David A. Romero and Cristina H. Amon

Energy, 2021, vol. 223, issue C

Abstract: Successful development of wind farms relies on the optimal siting of wind turbines to maximize the power capacity under stochastic wind conditions and wake losses caused by neighboring turbines. This paper presents a novel method to quickly generate approximate optimal layouts to support infrastructure design decisions. We model the quadratic integer formulation of the discretized layout design problem with an undirected graph that succinctly captures the spatial dependencies of the design parameters caused by wake interactions. On the undirected graph, we apply probabilistic inference using sequential tree-reweighted message passing to approximate turbine siting. We assess the effectiveness of our method by benchmarking against a state-of-the-art branch and cut algorithm under varying wind regime complexities and wind farm discretization resolutions. For low resolutions, probabilistic inference can produce optimal or nearly optimal turbine layouts that are within 3% of the power capacity of the optimal layouts achieved by state-of-the-art formulations, at a fraction of the computational cost. As the discretization resolution (and thus the problem size) increases, probabilistic inference produces optimal layouts with up to 9% more power capacity than the best state-of-the-art solutions at a much lower computational cost.

Keywords: Computational modelling; Layout; Optimization methods; Wake effects; Wind farms (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422100284X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:223:y:2021:i:c:s036054422100284x

DOI: 10.1016/j.energy.2021.120035

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:223:y:2021:i:c:s036054422100284x