Performance comparison of TEGs for diverse variable leg geometry with the same leg volume
ALkhadher Khalil,
Ahmed Elhassnaoui,
Said Yadir,
Obbadi Abdellatif,
Youssef Errami and
Smail Sahnoun
Energy, 2021, vol. 224, issue C
Abstract:
The product development process consists of all the steps required to transform a product from concept to market availability. The volume used to make a product is one of the most important factors affecting the final price of a product and has to be taken into account in the design stage. In this context, a study based on the finite element method was carried out using different geometrical shapes of the same volume by considering the five following shapes: rectangle, I-leg, X-leg, trap-leg, and Y-leg. To achieve this, two cases were examined. In the first case, all five shapes of the same volume (47.915 mm3) were studied by considering an identical length of X-leg (6 mm) and the variable cross-sectional area of the hot ceramic junction. The results obtained show that the rectangular leg model generates the highest efficiency and output power with 5.482% and 0.041 W respectively. In the second case, all shapes of identical volume (47.915 mm3) were analyzed by condensing a variable leg length and a fixed cross-sectional area of the hot ceramic junction of X-leg. The results also show that the rectangular leg model generates the highest output power, which is approximately 0.114 W. In addition, in order to optimize the best model found, the length of the legs allowing to obtain the optimal internal resistance and thermal conductivity has been determined. The findings indicate that the rectangular leg model with a leg length of 6 mm gives the best performance.
Keywords: Thermoelectric generator; Variable leg geometry; Same volume; Efficiency; Energy (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221002164
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:224:y:2021:i:c:s0360544221002164
DOI: 10.1016/j.energy.2021.119967
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().