EconPapers    
Economics at your fingertips  
 

Prediction of solar energy guided by pearson correlation using machine learning

Imane Jebli, Fatima-Zahra Belouadha, Mohammed Issam Kabbaj and Amine Tilioua

Energy, 2021, vol. 224, issue C

Abstract: Solar energy forecasting represents a key element in increasing the competitiveness of solar power plants in the energy market and reducing the dependence on fossil fuels in economic and social development. This paper presents an approach for predicting solar energy, based on machine and deep learning techniques. The relevance of the studied models was evaluated for real-time and short-term solar energy forecasting to ensure optimized management and security requirements in this field while using an integral solution based on a single tool and an appropriate predictive model. The datasets we used in this study, represent data from 2016 to 2018 and are related to Errachidia which is a semi-desert climate province in Morocco. Pearson correlation coefficient was deployed to identify the most relevant meteorological inputs from which the models should learn. RF and ANN have provided high accuracies against LR and SVR, which have reported very significant errors. ANN has shown good performance for both real-time and short-term predictions. The key findings were compared with Pirapora in Brazil, which is a tropical climate region, to show the quality and reproducibility of the study.

Keywords: Solar energy prediction; Machine and deep learning; Linear regression; Random forest; Support vector regression; Artificial neural networks (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (48)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221003583
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:224:y:2021:i:c:s0360544221003583

DOI: 10.1016/j.energy.2021.120109

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:224:y:2021:i:c:s0360544221003583