Fan operating condition effect on performance of self- cooling thermoelectric generator system
Ali Mohammadnia,
Behrooz M. Ziapour,
Farzad Sedaghati,
Lasse Rosendahl and
Alireza Rezania
Energy, 2021, vol. 224, issue C
Abstract:
Utilizing thermoelectric generators (TEGs) is increasing in many industrial applications due to its advantages. Heat rejection from cold side of a TEG module is a substantial parameter to improve conversion efficiency of the module. One of the easy-to-use cooling approaches is using direct current (DC) fans. This study investigates a self-cooling TEG system, where the cooling fans consume a fraction of power generated by the TEGs. Critical design parameters are studied to reach maximum net power by utilizing suitable operating conditions of the cooling fans. Moreover, performance of the TEG system, supplying electrical power required for both external user and the cooling fans, is explored experimentally. This paper studies, for the first time, effect of electrical input power of the cooling fans, coupled with the TEGs, on performance of the self-powered energy harvesting system. Results of this work demonstrate that, feasibility of utilization of the cooling fans is strongly related to thermal boundary conditions and electrical load resistance applied on the coupled electric circuit of the TEGs. Moreover, the results show a minimum inlet airflow temperature and a minimum external load resistance are required in self-cooling system to provide a net power more than without using the cooling fans.
Keywords: Fan operating condition; Thermoelectric generator; Energy harvesting; Active cooling strategy; Applicability of cooling fans (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221004266
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:224:y:2021:i:c:s0360544221004266
DOI: 10.1016/j.energy.2021.120177
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().