Parametric sensitivity analysis of split injection coupled varying methanol induced reactivity strategies on the exergy efficiency enhancement and emission reductions objectives in a biodiesel fuelled CI engine
Dipankar Kakati,
Srijit Biswas and
Rahul Banerjee
Energy, 2021, vol. 225, issue C
Abstract:
The present study endeavours to exploit the benefits of reactivity controlled operation by leveraging significantly higher methanol participation through a decoupled methanol utilization strategy with Madhuca Longifolia biodiesel and conventional diesel as the pilot fuel under varying split injection profiles. The investigation was carried out at 10%, 25% and 50% pilot mass percentage, while the injection timings of pilot and main injection were varied in between −35 and −55 and −5 to −15 aTDC respectively. The results showed that the higher methanol participations caused longer ignition delays which lead to the shifting of the CA50 rightwards beyond the top dead centre. Reduction in maximum pressure rise rate was also evident in the RCCI regime. Compared to the baseline operation of single injection, the methanol/biodiesel RCCI operation under split injection strategy observed a maximum of 86% enhancement in exergy efficiency along with the maximum reductions in NOx and Soot emissions as 86% and 96% respectively. Furthermore, the analysis of Pareto solutions revealed that the methanol/biodiesel RCCI operation yielded 2.8% higher exergy efficiency along with 94% lower emissions of soot compared to its diesel counterpart, while the methanol/diesel operations exhibited 35% lower NOx emissions compared to the equivalent biodiesel RCCI operation.
Keywords: Exergy efficiency; Mahua biodiesel; Methanol port injection; Reactivity controlled combustion; Sensitivity analysis; Trade-off analysis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221004539
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:225:y:2021:i:c:s0360544221004539
DOI: 10.1016/j.energy.2021.120204
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().