New insight on the mechanism of vibration effects in vapor-feed microfluidic fuel cell
Tiancheng Ouyang,
Jie Lu,
Zhongkai Zhao,
Jingxian Chen and
Peihang Xu
Energy, 2021, vol. 225, issue C
Abstract:
Fuel cell technology has the superiorities of long-term energy storage and instant power generation, as well as a clean and harmless reaction process. Microfluidic fuel cell is developed on the basis of membrane fuel cell, aiming at eliminating the life and cost of proton membrane by utilizing laminar flow characteristics. Microfluidic fuel cell has a broad application prospect in mobile electronic devices due to its inherent small size and higher power density. The main objective of this work is to investigate the vapor-feed microfluidic fuel cell performance under the influence of vibration in different properties. Meanwhile, fuel utilization and exergy efficiency are introduced to make a comprehensive efficiency analysis of the cell. In order to complete these studies, a three-dimensional model of vapor-feed microfluidic fuel cell is established in numerical simulation software and the vibration physical field is applied. The simulation results are compared with the experimental data to verify the reliability, after which the cell performance between the two vibration orientations under the effects of multiple parameters like intensity, frequency and phase is studied. The simulation results show that vibration has a positive but limited effect on vapor-feed microfluidic fuel cells, either power output or energy efficiency.
Keywords: Vapor-feed microfluidic fuel cell; Vibration parameters; Fuel concentration gradient; Current density distribution; Exergy efficiency (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221004564
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:225:y:2021:i:c:s0360544221004564
DOI: 10.1016/j.energy.2021.120207
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().