EconPapers    
Economics at your fingertips  
 

Minimum hydrogen consumption based control strategy of fuel cell/PV/battery/supercapacitor hybrid system using recent approach based parasitism-predation algorithm

Ahmed Fathy, Dalia Yousri, Turki Alanazi and Hegazy Rezk

Energy, 2021, vol. 225, issue C

Abstract: In hybrid renewable energy sources containing different storage devices like fuel cells, batteries, and supercapacitors, minimizing the hydrogen consumption is the main target for economic aspects and operation enhancement. External energy maximization strategy (EEMS) is the most popular energy management strategy used with hybrid renewable energy sources. However, gradient-based method is employed in EEMS which has low convergence, moreover it doesn’t guarantee the optimum solution. Therefore, this paper proposes for first time an energy management strategy based on recent metaheuristic optimizer of parasitism-predation algorithm employed in hybrid source comprises photovoltaic/fuel cell/battery/supercapacitor for supplying aircraft in emergency state during landing. The main target is hydrogen consumption minimization, this helps in enhancing the power durability to the aircraft in case of curtailment of the main power source. The selection of parasitism-predation algorithm (PPA) is due to requirement of less parameters defined by the user and its high convergence ability. The proposed strategy is compared to other conventional and programmed approaches of state machine control, water cycle algorithm, dynamic differential annealed optimization, spotted hyena optimizer, EEMS, marine predator algorithm, and mayfly optimization algorithm. The obtained results confirmed the superiority of the proposed method achieving efficiency of 95.34% and minimum hydrogen consumption of 15.7559 gm.

Keywords: Fuel cell; Renewable energy; Energy management strategy; Hybrid RESs; Parasitism-predation algorithm (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422100565X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:225:y:2021:i:c:s036054422100565x

DOI: 10.1016/j.energy.2021.120316

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:225:y:2021:i:c:s036054422100565x