EconPapers    
Economics at your fingertips  
 

Forecasting the potential and economic feasibility of power generation using biogas from food waste in Ghana: Evidence from Accra and Kumasi

Dan Cudjoe, Emmanuel Nketiah, Bright Obuobi, Gibbson Adu-Gyamfi, Mavis Adjei and Bangzhu Zhu

Energy, 2021, vol. 226, issue C

Abstract: Global environmental change is driven by food production. Biogas from food waste is a better source of clean energy. Ghana’s energy strategy targets a 10% increase in renewable energy and modern biomass in the national electricity generation mix. Studies on the assessment of electricity generation potential and economic feasibility of biogas to electricity projects in Ghana’s major cities are scarcely available. This study assesses the electricity generation potential of biogas from food waste through anaerobic digestion technology. The municipal solid waste generation potential of Accra and Kumasi was estimated from 2020 to 2039. The potential theoretical methane yield from food waste was calculated using Buswell’s equation. The study analyzed anaerobic digestion projects’ economic feasibility using the total life cycle cost, net present value, investment payback period, levelized cost of energy, and internal rate of return methods. A sensitivity analysis based on two scenarios (optimistic and pessimistic) was performed to analyze the influence of changes in the composition of food waste, per capita waste generation rate, population growth rate, per capita GDP growth rate, discount rate, capacity factor, electricity generation efficiency, waste collection efficiency, and methane production potential on the economic feasibility of the projects. The main findings indicate that the amount of waste generation in Accra during the project life cycle is 899,000 t/y to 3,359,000 t/y, while that of Kumasi is 915,000 t/y to 3,159,000 t/y. The power generation potential of the project in Accra ranges from 80.43 to 300.49 GWh/y, and in Kumasi ranges from 60.63 to 209.31 GWh/y. Economically, the project is feasible in Accra and Kumasi. The net present value of the project in Accra and Kumasi is $217,800,000 and $156,100,000. The sensitivity analysis shows that the project is infeasible in all the cities with a discount rate exceeding 20%. When the discount rate exceeds 20%, the project becomes highly infeasible in Accra compared to Kumasi. This study will offer itself as scientific guidance for investment in biogas to electricity projects in Ghana’s cities.

Keywords: Municipal solid waste; Biogas; Food waste; Electricity; Anaerobic digestion technology; Economy (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221005910
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:226:y:2021:i:c:s0360544221005910

DOI: 10.1016/j.energy.2021.120342

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221005910