Potential benefits and optimization of cool-coated office buildings: A case study in Chongqing, China
Chaoqun Zhuang,
Yafeng Gao,
Yingru Zhao,
Ronnen Levinson,
Per Heiselberg,
Zhiqiang Wang and
Rui Guo
Energy, 2021, vol. 226, issue C
Abstract:
Increasing envelope facet albedos considerably reduces solar heat gain, thus yielding building cooling energy savings. Few studies have explored the potential benefits of utilizing cool coatings on building envelopes (“cool-coated buildings”) based on life-cycle cost analysis. A holistic approach integrating the field testing, building energy simulation, and a 20-year life-cycle-based optimization was developed to explore cool-coated building performance and the maximum net savings of optimal building envelope retrofit and design. Experimental results showed that applying cool coatings to a west wall of an office building in Chongqing, China reduced its exterior surface temperature by up to 9.3 °C in summer. Simulation results showed that in Chongqing, making the roof and walls cool could reduce annual HVAC electricity use by up to 11.9% in old buildings (with poorly insulated envelopes) and up to 5.9% in new buildings. Retrofitting old buildings with a cool roof provided the net savings per modified area with present values up to 42.8 CNY/m2; retrofitting a new building with a cool roof or cool walls was not cost-effective. Optimizing both envelope insulation and envelope albedo can achieve 5.6 times the net savings of optimizing the insulation only, and 1.6 times that of optimizing albedo only.
Keywords: Cool roof; Cool wall; Life-cycle cost analysis; Optimization; Design; Retrofit (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221006228
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006228
DOI: 10.1016/j.energy.2021.120373
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().