EconPapers    
Economics at your fingertips  
 

Multi-level energy efficiency evaluation for die casting workshop based on fog-cloud computing

Huajun Cao, Erheng Chen, Hao Yi, Hongcheng Li, Linquan Zhu and Xuanhao Wen

Energy, 2021, vol. 226, issue C

Abstract: Die casting is a complex process performed in harsh working environments. Driven by cost and environmental pressure, die casting, as one of the most energy-intensive manufacturing processes, has received increasing attention on enhancing energy efficiency toward greener and more sustainable manufacturing. Energy efficiency evaluation is a starting point for energy audits and analysis of energy-saving scenarios, while complex production conditions in the die casting workshop (e.g. product changeover, technology improvements, and degradation of equipment performance) require even higher real-time and dynamic performance of energy efficiency evaluation. To this end, this paper proposes a multi-level energy efficiency evaluation framework based on fog-cloud computing. Accordingly, real-time parameter identification models and dynamic energy efficiency evaluation method are proposed. An industrial case study of die casting workshop has demonstrated the feasibility and effectiveness of the proposed approach. The results reported that the overall equipment effectiveness and energy utilization ratio of die casting units increased by 3% and 7%, respectively, and energy consumption per kilogram of the die casting workshop was reduced by 7.9%, showing its great potential in identifying energy efficiency improvement opportunities.

Keywords: Energy efficiency evaluation; Die casting workshop; Fog computing; Cloud computing (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221006460
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006460

DOI: 10.1016/j.energy.2021.120397

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006460