EconPapers    
Economics at your fingertips  
 

Effect of evaporation on the energy conversion of a supercritical water oxidation system containing a hydrothermal flame

Fengming Zhang, Yufeng Li, Cuijie Jia and Boya Shen

Energy, 2021, vol. 226, issue C

Abstract: Hydrothermal flame is an effective solution to avoid coking and salt plugging in the preheating section of a supercritical water oxidation (SCWO) system with a transpiring wall reactor (TWR). An SCWO system with an evaporation module (SCWOE) is proposed in this work to concentrate the wastewater and promote the formation of a hydrothermal flame. The SCWOE system is simulated using Aspen Plus, and the simulation model is validated by comparing with the experimental data on the migration of organics in evaporation. The introduction of the evaporation module greatly reduces the exergy input. The exergy destruction mainly comes from the TWR, electric heater, and heat exchangers. The highest exergy destruction in the TWR appears in the reaction section, and the total exergy destruction in the TWR due to the transpiring water injection reaches 89.9%. The increase in concentration ratio (α) and feed concentration (ω) can lower the exergy input and improve the energy efficiency, and an energy self-sufficient rate of 79.7% occurs at ω = 15% and α = 2. Moreover, the involatile property of organics is conducive to improving energy self-sufficient rate, and the volatilization rate of phenol in wastewater must be controlled in this system.

Keywords: Supercritical water oxidation; Evaporation; Hydrothermal flame; Volatility; Energy utilization diagram (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221006551
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006551

DOI: 10.1016/j.energy.2021.120406

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006551