EconPapers    
Economics at your fingertips  
 

Thermo-economic optimization of steam injection operation in enhanced oil recovery (EOR) using nano-thermal insulation

Mohammad Afra, S.M. Peyghambarzadeh, Khalil Shahbazi and Narges Tahmassebi

Energy, 2021, vol. 226, issue C

Abstract: Energy loss during steam injection in enhanced oil recovery (EOR) is customarily happened which not only reduces the steam heating value and increases the cost of operation but also leads to severe damages to injection pipes. In order to enhance the delivered heat to the oil deposit, it is common praxis to raise the steam injection rate or its temperature, in spite of the consequent energy loss enhancement. This is because such operations are considered more economical and easier to be applied in comparison to traditional pipe insulation. In this paper, it is tried to quantify the economic effectiveness of such diffused solutions, by means of an empirical apparatus, making a comparison with an advanced insulation technique, which employs nano-materials. Results show that 35% increase in steam injection rate with 35% extra investment only enhanced delivered heat to reservoir up to 7% while it caused 90% more energy loss. On the other hand, 21% increase in steam temperature with 11.5% extra investment enhanced delivered heat to reservoir up to 7.5% while it caused 14% more energy loss. However, implementing nano-thermal insulations could reduce the energy loss from 25% to 44% with an extra investment of less than 3%.

Keywords: Enhanced oil recovery; Steam injection; Energy; Economic indicators; Nano-thermal insulation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221006587
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006587

DOI: 10.1016/j.energy.2021.120409

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006587