Time scales for steam injection and bitumen production in steam-assisted gravity drainage
Jingyi Wang and
Ian D. Gates
Energy, 2021, vol. 227, issue C
Abstract:
Despite technical and economic success of Steam-assisted gravity drainage (SAGD), improvements of its thermal efficiency as reflected by the steam-to-oil ratio (SOR) present challenges. Given that the SOR is a measure of the ratio of the energy invested to the energy (chemical energy in oil) produced and emissions intensity, there is strong motivation to reduce the SOR since the lower the SOR, the lower is the energy invested and emissions produced per unit oil produced. However, there appears to be few directions for modifying SAGD to improve the SOR by adjusting the steam injection strategy or fluid production strategy alone. In this research, multiple steam components and multiple bitumen components are used in a thermal reservoir simulation model to understand the time scales of steam flow and bitumen mobilization, drainage, and production. The results reveal that immediate bitumen response is observed near the well and in the steam-trap liquid pool above the production well whereas the time scale between steam stimulation and bitumen response can be as high as hundreds of days. This brings into question the meaningfulness of the steam-to-oil ratio as a control variable for behaviours far from the well pair.
Keywords: Steam-assisted gravity drainage (SAGD); Time scales; Steam-to-oil ratio; Process efficiency (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221006794
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:227:y:2021:i:c:s0360544221006794
DOI: 10.1016/j.energy.2021.120430
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().